3.1.69 \(\int \frac {x^3}{(a x+b x^3)^{3/2}} \, dx\) [69]

Optimal. Leaf size=115 \[ -\frac {x}{b \sqrt {a x+b x^3}}+\frac {\sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} b^{5/4} \sqrt {a x+b x^3}} \]

[Out]

-x/b/(b*x^3+a*x)^(1/2)+1/2*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/
4)))*EllipticF(sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(
1/2)+x*b^(1/2))^2)^(1/2)/a^(1/4)/b^(5/4)/(b*x^3+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.235, Rules used = {2047, 2036, 335, 226} \begin {gather*} \frac {\sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} b^{5/4} \sqrt {a x+b x^3}}-\frac {x}{b \sqrt {a x+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3/(a*x + b*x^3)^(3/2),x]

[Out]

-(x/(b*Sqrt[a*x + b*x^3])) + (Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*Elliptic
F[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(2*a^(1/4)*b^(5/4)*Sqrt[a*x + b*x^3])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2036

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]), Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] &&  !I
ntegerQ[p] && NeQ[n, j] && PosQ[n - j]

Rule 2047

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n +
1)*((a*x^j + b*x^n)^(p + 1)/(b*(n - j)*(p + 1))), x] - Dist[c^n*((m + j*p - n + j + 1)/(b*(n - j)*(p + 1))), I
nt[(c*x)^(m - n)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (I
ntegersQ[j, n] || GtQ[c, 0]) && LtQ[p, -1] && GtQ[m + j*p + 1, n - j]

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a x+b x^3\right )^{3/2}} \, dx &=-\frac {x}{b \sqrt {a x+b x^3}}+\frac {\int \frac {1}{\sqrt {a x+b x^3}} \, dx}{2 b}\\ &=-\frac {x}{b \sqrt {a x+b x^3}}+\frac {\left (\sqrt {x} \sqrt {a+b x^2}\right ) \int \frac {1}{\sqrt {x} \sqrt {a+b x^2}} \, dx}{2 b \sqrt {a x+b x^3}}\\ &=-\frac {x}{b \sqrt {a x+b x^3}}+\frac {\left (\sqrt {x} \sqrt {a+b x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{b \sqrt {a x+b x^3}}\\ &=-\frac {x}{b \sqrt {a x+b x^3}}+\frac {\sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 \sqrt [4]{a} b^{5/4} \sqrt {a x+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 54, normalized size = 0.47 \begin {gather*} \frac {x \left (-1+\sqrt {1+\frac {b x^2}{a}} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};-\frac {b x^2}{a}\right )\right )}{b \sqrt {x \left (a+b x^2\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3/(a*x + b*x^3)^(3/2),x]

[Out]

(x*(-1 + Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((b*x^2)/a)]))/(b*Sqrt[x*(a + b*x^2)])

________________________________________________________________________________________

Maple [A]
time = 0.34, size = 130, normalized size = 1.13

method result size
default \(-\frac {x}{b \sqrt {\left (x^{2}+\frac {a}{b}\right ) b x}}+\frac {\sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{2 b^{2} \sqrt {b \,x^{3}+a x}}\) \(130\)
elliptic \(-\frac {x}{b \sqrt {\left (x^{2}+\frac {a}{b}\right ) b x}}+\frac {\sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {x b}{\sqrt {-a b}}}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{2 b^{2} \sqrt {b \,x^{3}+a x}}\) \(130\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^3+a*x)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/b*x/((x^2+a/b)*b*x)^(1/2)+1/2/b^2*(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))*b/(-a*b)^(1/2))^(1/2)*(-2*(x-1/b*(-a*b
)^(1/2))*b/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)/(b*x^3+a*x)^(1/2)*EllipticF(((x+1/b*(-a*b)^(1/2))*b/(
-a*b)^(1/2))^(1/2),1/2*2^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^3+a*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(x^3/(b*x^3 + a*x)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.41, size = 51, normalized size = 0.44 \begin {gather*} \frac {{\left (b x^{2} + a\right )} \sqrt {b} {\rm weierstrassPInverse}\left (-\frac {4 \, a}{b}, 0, x\right ) - \sqrt {b x^{3} + a x} b}{b^{3} x^{2} + a b^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^3+a*x)^(3/2),x, algorithm="fricas")

[Out]

((b*x^2 + a)*sqrt(b)*weierstrassPInverse(-4*a/b, 0, x) - sqrt(b*x^3 + a*x)*b)/(b^3*x^2 + a*b^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3}}{\left (x \left (a + b x^{2}\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**3+a*x)**(3/2),x)

[Out]

Integral(x**3/(x*(a + b*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^3+a*x)^(3/2),x, algorithm="giac")

[Out]

integrate(x^3/(b*x^3 + a*x)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^3}{{\left (b\,x^3+a\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(a*x + b*x^3)^(3/2),x)

[Out]

int(x^3/(a*x + b*x^3)^(3/2), x)

________________________________________________________________________________________